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Abstract

Hantaviruses are important zoonotic pathogens of public health importance that are
found on all continents except Antarctica and are associated with hemorrhagic fever
with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome
(HPS) in the New World. Despite the significant disease burden they cause, no FDA-
approved specific therapeutics or vaccines exist against these lethal viruses. The lack
of available interventions is largely due to an incomplete understanding of hantavirus
pathogenesis and molecular mechanisms of virus replication, including cellular entry.
Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of
virions and are necessary and sufficient to orchestrate virus attachment and entry.
In vitro studies have implicated integrins (β1–3), DAF/CD55, and gC1qR as candidate
receptors that mediate viral attachment for both Old World and NewWorld hantaviruses.
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Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular
attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo,making
it the first clade-specific host factor to be identified. Attachment of hantavirus particles
to cellular receptors induces their internalization by clathrin-mediated, dynamin-
independent, or macropinocytosis-like mechanisms, followed by particle trafficking to
an endosomal compartment where the fusion of viral and endosomal membranes
can occur. Following membrane fusion, which requires cholesterol and acid pH, viral
nucleocapsids escape into the cytoplasm and launch genome replication. In this review,
we discuss the current mechanistic understanding of hantavirus entry, highlight gaps
in our existing knowledge, and suggest areas for future inquiry.

Abbreviations
Ad5V adenovirus serotype-5

ADCC antibody-dependent cellular cytotoxicity

AdV adenovirus

ANDV Andes virus

BCCV Black Creek Canal virus

cDNA complementary DNA

CHO Chinese hamster ovary

CRISPR clustered regularly interspaced short palindromic repeats

CryoEM cryo-electron microscopy

DAF/CD55 decay accelerating factor/cluster of differentiation-55

DOBV Dobrava-Belgrade virus

EC1 first extracellular cadherin repeat

EGF epidermal growth factor

ER endoplasmic reticulum

Fc fragment crystallizable region

FDA United States Food and Drug Administration

Gc C-terminal glycoprotein subunit

gC1qR globular head of complement component 1 Q-subcomponent receptor

Gn N-terminal glycoprotein subunit

GPC glycoprotein precursor

GPI glycosylphosphatidylinositol

HFRS hemorrhagic fever with renal syndrome

HPS hantavirus pulmonary syndrome

HTNV Hantaan virus

HUVEC human umbilical vein endothelial cells

KO knockout

mAb monoclonal antibody

MPRLV Maporal virus

N nucleocapsid protein

nAb neutralizing antibody

NIAID United States National Institute of Allergy and Infectious Diseases

NSs hantavirus non-structural protein

NY-1V New York-1 virus
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PCDH1 protocadherin-1

PHV Prospect Hill virus

PSI plexin-semaphorin-integrin

PUUV Puumala virus

RdRp RNA-dependent RNA polymerase

RGD arginine-glycine-aspartate

SANGV Sangassou virus

SEOV Seoul virus

siRNA small interfering RNA

SNV Sin Nombre virus

TMIR target membrane-interacting region

TULV Tula virus

VEGF vascular endothelial growth factor

VEGFR2 vascular endothelial growth factor receptor-2

VLP virus-like particle

vRNA viral RNA

VSV vesicular stomatitis virus

WT wild-type

1. Introduction

Hantaviruses are emerging rodent-borne pathogens whose accidental

human transmission causes Hemorrhagic Fever with Renal Syndrome

(HFRS) in the Old World and Hantavirus Pulmonary Syndrome (HPS)

in the NewWorld (Vaheri et al., 2013). HPS-causing hantaviruses are listed

as Category A pathogens by the US National Institute of Allergy and

Infectious Diseases (NIAID). Over 50,000 cases occur globally each year

with fatality rates of up to 12% (HFRS) and 40% (HPS), depending on

the infecting virus (Watson et al., 2014). The number of cases is predicted

to increase as climate change and deforestation cause increases in rodent

populations, bringing them into close proximity with human settlements

(Guterres and de Lemos, 2018; Klempa, 2009). Despite the likelihood that

the burden of hantavirus disease will increase, no FDA-approved vaccines or

therapeutics exist against HFRS or HPS, in part due to a limited understand-

ing of the viral life cycle. Although the discovery of HPS-causing hantavi-

ruses in the 1990s significantly accelerated hantavirus research, the specific

roles of host factors and the details of entry mechanisms remain poorly char-

acterized. Here, we summarize the current understanding of hantavirus

entry, including the structures of viral surface glycoproteins, the roles of

187Hantavirus entry



candidate receptors in entry, pathogenesis, and host range. We also discuss

surrogate systems to study hantavirus entry, and the targeting of hantavirus

glycoproteins for the development of vaccines and antibody-based thera-

peutics. Finally, we highlight key questions that remain unanswered in

the field.

2. Hantavirus ecology and diseases

Hantaviruses are members of the family Hantaviridae within the order

Bunyavirales, which includes many viruses of medical, agricultural, and vet-

erinary importance. Similar to some other bunyaviruses, hantaviruses are

maintained and transmitted through many mammalian host reservoirs

including bats (order Chiroptera), shrews and moles (order Soricomorpha),

and rodents (order Rodentia) (Yanagihara et al., 2014; Zhang, 2014).

Virus-host relationships appear to be specific—in general, each hantavirus

associates with only one reservoir host (Table 1). Rodent-borne hantavi-

ruses are classified into three clades based on their reservoir hosts: (1)

New World viruses [e.g., Sin Nombre virus (SNV), New York-1 virus

(NY-1V), and Andes virus (ANDV)] causing HPS that are carried by

members of the Sigmodontinae sub-family, (2) Old World viruses [e.g.,

Hantaan virus (HTNV), Seoul virus (SEOV), and Dobrava-Belgrade virus

(DOBV)] causing HFRS that are harbored in Murinae rodents, and (3)

viruses found in the New or OldWorld that are associated with mild disease

[Puumala virus (PUUV)] or are non-virulent [e.g., Prospect Hill virus

(PHV) and Tula virus (TULV)] and are carried by Arvicolinae rodents

(Meyer and Schmaljohn, 2000). Phylogenetic analyses suggest that hantavi-

ruses originated in bats, shrews, or moles and later established persistent

infections in rodents. Hantaviruses further diverged as rodent populations

underwent geographic separation and divergent evolution (Witkowski

et al., 2016; Yanagihara et al., 2014; Zhang, 2014). It is assumed that this

co-evolution of virus and host ultimately led to the emergence of virulent

hantaviruses, as only rodent-borne hantaviruses, found in theOrthohantavirus

genus, are recognized to cause human disease (Forbes et al., 2018). How-

ever, there is evidence supporting the occurrence of shrew-borne hantavirus

infection in humans (Heinemann et al., 2016; Okumura et al., 2007).

Hantaviruses establish a persistent infection in their rodent hosts that is

generally recognized as asymptomatic and can persist for months to the life-

time of the animal (Ermonval et al., 2016; Lee et al., 1978; Yanagihara et al.,

1985). Once infected, the host will shed virus through its saliva, urine, and
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Table 1 Selected hantaviruses and their reservoir hosts.

Virus
Host sub-
family Host species Distribution

Associated
disease
(fatality rate)

Hantaan Murinae Striped field mouse

(Apodemus agrarius)

Asia and

Russia

HFRS

(10–15%)

Dobrava-

Belgrade

Murinae Yellow-necked mouse

(Apodemus flavicollis)

Europe HFRS

(7–12%)

Seoul Murinae Norway rat (Rattus

norvegicus)

Worldwide HFRS (1–5%)

Puumala Arvicolinae Bank vole (Clethrionomys

glareolus)

Europe HFRS

(0.1–0.4%)

Khabarovsk Arvicolinae Reed vole (Microtus

fortis)

Russia N/A

Prospect

Hill

Arvicolinae Meadow vole (Microtus

pennsylvanicus)

North

America

N/A

Tula Arvicolinae Common vole (Microtus

arvalis)

Europe Unknown

Isla Vista Arvicolinae California vole (Microtus

californicus)

North

America

N/A

Sin

Nombre

Sigmodontinae Deer mouse (Peromyscus

maniculatus)

North

America

HPS

(40–60%)

Andes Sigmodontinae Long-tailed pygmy rice

rat (Oligoryzomys

longicaudatus)

South

America

HPS

(43–56%)

Black

Creek

Canal

Sigmodontinae Hispid cotton rat

(Sigmodon hispidus)

North

America

HPS (>40%)

Rio

Segundo

Sigmodontinae Mexican harvest mouse

(Reithrodontomys

mexicanus)

Central

America

Unknown

Laguna

Negra

Sigmodontinae Large vesper mouse

(Calomys callosus)

South

America

HPS (15%)

Red lines separate the rodent-borne hantavirus clades. Viruses in each clade are carried by rodents of the
same sub-family. Hantavirus species are found on most continents and display varied virulence in humans
(Hardcastle et al., 2016; Jiang et al., 2017; Meyer and Schmaljohn, 2000).
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feces, allowing it to infect other rodents through bites or through its excre-

ment, which can form aerosols inhaled by other rodents (Nuzum et al.,

1988; Voutilainen et al., 2015). Human infection is considered a spillover

event and the main transmission route is through inhalation of virus particles

from contaminated rodent excrement ( Johnson, 2001). There is some evi-

dence that infection can also occur by the gastrointestinal route (Witkowski

et al., 2017). Human-to-human transmission has only been documented for

ANDV and occurs among those with fairly intimate contact, such as those

who sleep in close proximity over a prolonged period (Martinez et al., 2005;

Martinez-Valdebenito et al., 2014). It is suspected that ANDV can be trans-

mitted through bodily fluids from infected individuals. Human infection is

characterized by fever, muscle aches, gastrointestinal symptoms, and, most

notably, vascular leakage (Sargianou et al., 2012). Due to similar underlying

pathology and clinical features such as vascular leakage and thrombocytope-

nia, some have argued that HFRS and HPS are one disease, and not two

(Clement et al., 2014; Rasmuson et al., 2011). However, renal involvement

is more prominent in HFRS cases, resulting in oliguria and renal failure, and

pulmonary symptoms are more pronounced in HPS cases and many patients

experience pulmonary edema (Sargianou et al., 2012), raising the possibility

that viral differences in host factor usage account, in part, for these

differences in hantavirus pathogenesis.

3. Hantavirus particle and genes

The infectious virions of hantaviruses are enveloped spherical particles

with a diameter of 80–120nm (McCormick et al., 1982; Muyangwa et al.,

2015) (Fig. 1A). The negative-strand RNA genomes of hantaviruses com-

prise three segments: a 1.8–2.1kb small segment (S), a 3.7–3.8kb medium

segment (M), and a 6.5–6.6kb large segment (L) (Fig. 1B) (Hepojoki et al.,

2012; Schmaljohn et al., 1983). Each segment has highly conserved 30 and 50

untranslated regions that contain complementary nucleotides (Chizhikov

et al., 1995; Schmaljohn and Dalrymple, 1983). These regions recognize

each other to form panhandle structures that give the RNA segments a cir-

cular appearance in some microscopic images. These panhandle structures

are a hallmark of bunyaviruses (Elliott et al., 1991) and are thought to reg-

ulate viral transcription and replication, as demonstrated for other negative-

strand RNA viruses, such as vesicular stomatitis virus (Wertz et al., 1994)

and influenza A virus (Lee and Seong, 1996; Tiley et al., 1994). Viral

RNA (vRNA) segments are each associated with an RNA-dependent
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RNA polymerase (RdRp) and are encased in nucleocapsid protein

(Hepojoki et al., 2012; Mir et al., 2006). These are contained in a host-

derived lipid envelope that is decorated with two glycoproteins, Gn

(N-terminal subunit) and Gc (C-terminal subunit) (Fig. 1B).

The L and S segments encode the 250-kDa RdRp and the 50-kDa

nucleocapsid protein (N), respectively (Schmaljohn et al., 1983, 1986).

The RdRp mediates transcription and replication of the hantavirus genome

with its transcriptase, replicase, and endonuclease activities (Kukkonen et al.,

2005; Muyangwa et al., 2015). The N protein coats the vRNA to protect it

from cellular nucleases and works together with RdRp to ensure efficient

replication of the viral genome (Mir and Panganiban, 2006; Mir et al.,

2006). In addition, ANDV N protein enhances microvascular endothelial

cell permeability (Gorbunova et al., 2016). It was also reported that

N proteins help mediate viral immune evasion by protecting infected endo-

thelial cells from T cell attack and by down-regulating the type I interferon

response (Gupta et al., 2013; Pan et al., 2015). Akin to other bunyaviruses,

hantaviruses harbored in Arvicolinae and Sigmodontinae rodents have an over-

lapping open reading frame (+1) in the S segment that encodes for a putative

Fig. 1 Schematic representation of hantavirus particle and genes. (A) Hantaviruses carry
a tri-segmented negative-sense RNA genome encased in a lipid envelope that is stu-
dded with surface spikes comprising the Gn and Gc glycoproteins. (B) Small (S), medium
(M) and large (L) genome segments encode nucleoprotein (N), Gn/Gc glycoproteins
and RNA-dependent RNA polymerase, respectively. (C) Linear representation of hanta-
virus Gn/Gc. Gn is proteolytically cleaved from Gc at the conserved WAASA site by
the cellular signal protease complex (represented by scissors). SP, signal peptide; TM,
transmembrane region (shown as shaded block); C-tail, cytoplasmic tail.
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7–10kDa non-structural protein NSS. However, only PUUV, TULV and

ANDV are known to express it during infection ( J€a€askel€ainen et al., 2007;

Vera-Otarola et al., 2012). The reduced frequency of nucleotide substitu-

tions in the predicted NSS coding region likely indicates a functional role

for this protein—NSS has been proposed to inhibit the host’s interferon

response ( J€a€askel€ainen et al., 2007). However, the contribution of NSS dur-

ing hantavirus pathogenesis and the reasons for its presence only in viruses

infecting arvicoline and sigmodontine rodents are still unknown.

The M segment encodes a glycoprotein precursor (GPC) of 1133–1158
amino acids (Schmaljohn et al., 1987). A signal peptide at the N-terminus of

GPC directs the translating ribosomes to the endoplasmic reticulum (ER),

where GPC is co-translationally cleaved by the cellular signal peptidase

complex at a conserved WAASA sequence to yield Gn and Gc (Fig. 1C)

(Kamrud and Schmaljohn, 1994; L€ober et al., 2001). Gn and Gc undergo

N- and O-glycosylations and traffic together to the Golgi apparatus prior

to their incorporation into viral particles. Gn and Gc are the only viral

proteins on the surface of hantavirus virions and orchestrate viral entry into

susceptible cells.

4. Hantavirus entry pathway

Although hantaviruses cause human diseases worldwide, our knowl-

edge of their entry mechanisms remains limited. This lack of understanding

presents one of the major obstacles to the development of new therapies.

Viral attachment to the cell surface is the first essential step to establish infec-

tion; several cellular proteins have been implicated in mediating Old World

and New World hantavirus attachment to cells (see Section 6 for more

details, Fig. 2).

Following attachment, hantaviruses are internalized, possibly through a

variety of endocytic strategies including clathrin-mediated endocytosis

and dynamin-independent pathways, depending on cell type and experi-

mental conditions. Some studies suggest that Old World hantaviruses

(HTNV, SEOV) are internalized via clathrin-mediated endocytosis ( Jin

et al., 2002), whereas studies with the New World hantavirus ANDV

suggest a more complex picture (Chiang et al., 2016; Ramanathan and

Jonsson, 2008). Specifically, Ramanathan and Jonsson described dynamin-

independent uptake of ANDV, whereas a small interfering RNA (siRNA)

screen in human lung microvascular cells identified genes encoding for dyna-

min, the clathrin heavy chain, and the adaptor protein AP2, three major
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components of the clathrin-dependent endocytosis pathway, as major hits for

ANDV internalization (Chiang et al., 2016; Ramanathan and Jonsson, 2008).

Further, ANDV was shown to be dependent on host factors implicated in

dynamin-independent macropinocytosis, including cholesterol and the

Rho GTPase Rac11 (Chiang et al., 2016; Torriani et al., 2019).

After internalization, viral particles are delivered to early endosomes

and eventually trafficked to late endosomal and lysosomal compartments.

One of the hallmarks of endosomal maturation is the decrease of their

intra-luminal pH, from mildly acidic in early endosomes to strongly acidic

in endo-lysosomes. Because hantaviruses require acid pH (5.8–6.3) to

undergo membrane fusion (Arikawa et al., 1985; Cifuentes-Muñoz

et al., 2011; Kleinfelter et al., 2015), they are generally assumed to traffic

to early or late endosomes (Albornoz et al., 2016). However, details on the

molecular mechanisms of hantavirus endocytic trafficking remain limited.

Viral entry culminates in fusion of the viral membrane with the endo-

somal membrane, followed by escape of the viral nucleocapsid payload into

the cytoplasm. Hantavirus membrane fusion is driven by large conforma-

tional changes in the Gc protein. The site of hantavirus membrane fusion

and the endosomal conditions required for fusion, other than luminal

acid pH, are not well defined. Membrane fusion mediated by Gn/Gc of

New World hantavirus ANDV has a pH threshold of 5.8, whereas that

by Old World hantavirus HTNV Gn/Gc is 6.3 (Arikawa et al., 1985;

Fig. 2 An overview of the hantavirus entry pathway. Host factors demonstrated or pro-
posed to play a role in four stages of hantavirus entry, i.e., attachment, internalization,
trafficking and membrane fusion are indicated. See the text for details.
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Cifuentes-Muñoz et al., 2011; Kleinfelter et al., 2015), suggesting late and

early endosomes as the sites of fusion, respectively. Although pH is a major

determinant of the fusion site, a number of other class II viral glycoproteins

(see below) have additional requirements that can influence the identity

of the fusion compartment (Bitto et al., 2016; Bron et al., 1993; Dub�e
et al., 2014; Kielian and Helenius, 1984; Lu et al., 1999; Nieva et al.,

1994; Zaitseva et al., 2010). To identify such host requirements for hanta-

virus entry, genome-wide loss-of-function genetic screens were performed

in insect and human cells. These screens revealed the requirement of mul-

tiple genes involved in cholesterol sensing, regulation, and biosynthesis for

Old and NewWorld hantavirus entry and infection (Kleinfelter et al., 2015;

Petersen et al., 2014). Mechanistic studies showed that the cholesterol

content of target membranes strongly influences the efficiency of hantavirus

Gn/Gc-mediated membrane fusion (Kleinfelter et al., 2015). While

alphaviruses, such as Semliki Forest virus and Sindbis virus, require choles-

terol in the target membrane for virus fusion (Bron et al., 1993; Kielian and

Helenius, 1984; Lu et al., 1999), hantavirus membrane fusion and entry is

exquisitely sensitive to small reductions in cellular cholesterol levels, under-

lining this key requirement (Kleinfelter et al., 2015). Following membrane

fusion, the viral nucleocapsid is presumed to escape into the cytoplasm. The

molecular details of viral “uncoating” and the delivery of nucleocapsid cores

to intracellular sites of transcription and replication remain obscure, as is the

potential involvement of host factors in these processes.

5. Structure and function of hantavirus glycoproteins

Hantavirus Gn/Gc are necessary and sufficient for cellular entry. On

the viral membrane, Gn and Gc form a grid-like pattern that is a character-

istic of hantaviruses (Huiskonen et al., 2010; Martin et al., 1985). Each

square-shaped Gn/Gc spike has a fourfold symmetry and is composed of

four copies each of Gn and Gc (Fig. 3A). The viral Gn is a�70kDa protein

composed of anti-parallel β sheets and α helices (Rissanen et al., 2017)

(Fig. 3A). Fitting the crystal structure of PUUV Gn onto a cryo-electron

tomography reconstruction of the TULV surface showed that Gn is distal

to the viral membrane and sits atop Gc, probably protecting the target

membrane-interacting region (TMIR) (Li et al., 2016). Gn contains seven

disulfide bonds that stabilize the protein and that are conserved among han-

taviruses (Li et al., 2016). In addition, Gn contains multiple N-linked glycans

that project toward neighboring Gn proteins and may be important for
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Gn-Gn interactions. Although soluble Gn is monomeric and has limited

Gn-Gn interactions, acidification is proposed to lead to the formation of

compact Gn tetramers by locking a β-hairpin into a pocket on the adjacent

Gn subunit (Rissanen et al., 2017). Gn is less conserved in amino acid se-

quence among hantaviruses than is Gc (e.g., 50% and 60% amino acid

sequence identity between HTNV and PUUV Gn and Gc, respectively).

Nevertheless, divergent Gn (andGc) proteins share a common fold, suggesting

that the overall architecture of Gn/Gc complexes is conserved among hanta-

viruses (Rissanen et al., 2017). Gn is proposed to bind to cell-surface receptors

during entry based on its membrane-distal, solvent-exposed position on the

spike and information derived from other bunyaviruses, although this has

not been demonstrated experimentally. Given their variability in Gn

sequence, different clades of hantaviruses are likely to use different attachment

factors and/or receptors (Gavrilovskaya et al., 1998, 1999; Jangra et al., 2018).

Fig. 3 Structure of hantavirus Gn and Gc. (A) Partial structural model for Gn tetramer
derived by fitting the X-ray crystal structure of the N-terminal region of PUUV Gn (amino
acid residues 29–383; PDB ID: 5FXU) into the cryo-electron tomography (cryo-ET)-
derived density map of the TULV glycoprotein spike (PDB ID: 5FYN) (Li et al., 2016).
Adjacent subunits are colored in cyan and green. Gray outlines in (A)–(C) represent
surface-shaded views. En face view relative to the surface of the viral particle is shown.
(B) X-ray crystal structure of the monomeric ectodomain of HTNV Gc in its putative
pre-fusion conformation (PDB ID: 5LJY) (Guardado-Calvo et al., 2016). (C) X-ray crystal
structure of the ectodomain of HTNV Gc in its trimeric post-fusion conformation
(PDB ID: 5LK0) (Guardado-Calvo et al., 2016). (B) and (C) Gc is colored according to
the convention for Class II fusion proteins: domains I, II, and III are shown in red, yellow,
and blue, respectively. The DI–DIII linker is shown in cyan, and the beginning of the stem
region at the C-terminus of the crystallized ectodomain constructs is shown inmagenta.
Disulfide bonds are shown as sticks, with sulfur atoms colored green. (C) The trimer is
oriented axially to the viral and target membranes, with the fusion loops in domain II at
the top of the structure.
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The Gn cytoplasmic tail is 110 amino acids long and carries a single

structured domain, a zinc finger, which likely plays a role in interactions

with the N protein during virus assembly (Estrada et al., 2009, 2011;

Wang et al., 2010), possibly in a manner functionally analogous to the matrix

proteins of other viruses (Hepojoki et al., 2010a,b). The Gn cytoplasmic tails

of virulent hantaviruses can also block the type I interferon response to limit

the host immune response to infection (Alff et al., 2008; Shim et al., 2011).

Crystal structures of the pre-fusion ectodomain of Gc proteins from

multiple hantaviruses reveal that Gc is a class II fusion protein similar in

structure to the glycoproteins of flaviviruses, alphaviruses, Rubella virus,

and phleboviruses (Guardado-Calvo and Rey, 2017; Guardado-Calvo

et al., 2016; Willensky et al., 2016). Like these latter class II fusion proteins,

hantavirus Gc comprises three domains of β strands and sheets: Domain

I (DI) is the central domain, Domain II (DII) is located in the

membrane-distal region and contains the TMIR, and Domain III (DIII)

resides proximal to the viral membrane and connects to the stem and trans-

membrane domain (Fig. 3B). The hantavirus Gc structure also possesses

certain unique features. The hantavirus ij loop on DII is unusually long,

allowing the TMIR to consist of three fusion loops involving residues on

the cd loop, ij loop, and bc loop (termed the α-αA loop on the PUUV Gc

structure) (Guardado-Calvo et al., 2016; Willensky et al., 2016) (Fig. 3B).

Gc also contains a conserved N-linked glycosylation site on DII, which is

thought to help stabilize Gc interactions with DIII of neighboring Gc proto-

mers during fusion (Willensky et al., 2016). Gc protomers mediate interac-

tions at twofold Gc:Gc contacts between neighboring Gn/Gc spikes on the

virion surface (Bignon et al., 2019; Guardado-Calvo et al., 2016; Willensky

et al., 2016). Even at neutral pH, these spikes alternate between “open” (in

which the TMIR is exposed) and “closed” (in which the TMIR is protected

by Gn) conformations in a temperature-dependent manner and only the

“closed” form is capable of inducing acid-pH-mediated membrane fusion

(Bignon et al., 2019). Hantavirus Gc contains 26 conserved cysteine residues

that form disulfide bonds, providing rigidity and stability to the TMIR

(Willensky et al., 2016) (Fig. 3B). The Gc cytoplasmic tail is short (9–26
amino acid residues), and has no known function.

The post-fusion Gc structure also resembles those of other class II fusion

proteins. DIII packs against the DI and DII junction, and DII hinges to pro-

ject the fusion loop toward the target membrane (Fig. 3C). At acid pH, Gc

forms trimers that are stabilized by salt bridges and a unique N-terminal tail

(Acuña et al., 2015; Guardado-Calvo et al., 2016; Willensky et al., 2016).
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The Gc stem is vital for the formation of post-fusion conformation

(Guardado-Calvo and Rey, 2017) and peptides corresponding to it block

ANDV fusion (Barriga et al., 2016). The Gc sequence is fairly well-

conserved among hantaviruses, consistent with its direct role in viral

membrane fusion. ANDV and PUUV share 76% sequence identity and

89% sequence similarity, suggesting that the features seen in OldWorld han-

tavirus Gc crystal structures are also present in Gc proteins of New World

hantaviruses. This is also supported by three-dimensional (3D) molecular

modeling of ANDV Gc (Tischler et al., 2005).

As mentioned above, hantavirus Gn/Gc proteins undergo acid-induced

conformational changes during fusion. Associations between Gn and Gc are

pH-sensitive and dissociation begins at pH 6.4 for PUUVGn/Gc (Hepojoki

et al., 2010a,b). However, Gn/Gc dissociation is reversible and does not

represent virus fusion triggering. Rather, Gn/Gc dissociation likely acts as

a priming step that allows Gc to undergo subsequent fusion triggering. In

the post-fusion state, spike proteins on the viral surface are composed of

Gn tetramers and Gc trimers. Based on a comparison of TULV cryoEM

structures at neutral and acid pH, and HTNV Gn crystal structure at

acid pH, Rissanen and co-workers proposed that the formation of acid-

induced, narrower, compact Gn tetramers detaches it from Gc and exposes

otherwise-shielded hydrophobic fusion loops allowing the formation of an

extended intermediate (Rissanen et al., 2017). However, structures of the

Gn/Gc complexes at neutral and acid pH need to be solved to further test

this model. Whether host factors, including the candidate receptors, play a

role in the Gn/Gc conformational changes that eventually lead to the fusion

of viral and endosomal membranes needs to be determined.

6. Candidate hantavirus receptors

The first proteins characterized as hantavirus entry factors were α5β1
and αVβ3 integrins. Integrins are heterodimeric transmembrane glycopro-

teins composed of alpha and beta subunits. To fulfill their cellular function,

integrins bind to components of the extracellular matrix and link them to the

actin cytoskeleton at focal adhesion sites, thus affording bidirectional signal-

ing (Campbell and Humphries, 2011). Both non-enveloped (Guerrero

et al., 2000; Jackson et al., 2000; Maginnis et al., 2006; Wickham et al.,

1993) and enveloped viruses (Chu and Ng, 2004; Cseke et al., 2009;

Feire et al., 2004; Gianni et al., 2010) use integrins for particle attachment

or internalization into cells. Integrin-specific ligands and antibodies were
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evaluated for their effect on hantavirus infection (Gavrilovskaya et al., 1998,

1999). Pre-incubating human umbilical vein endothelial cells (HUVEC)

or VeroE6 grivet monkey kidney epithelial cells with the αVβ3 ligand

vitronectin reduced cellular susceptibility to multiple virulent New World

(ANDV, SNV and NY-1V) and Old World hantaviruses (HTNV, SEOV

and PUUV). Conversely, infection by the avirulent PHV was only reduced

by the α5β1 ligand fibronectin (Gavrilovskaya et al., 1998, 1999). However,

binding of vitronectin and fibronectin is not limited to αVβ3 and α5β1
integrins, respectively. For instance, αVβ3 integrin can recognize both fibro-
nectin and vitronectin depending on its conformation (Boettiger et al.,

2001; Van Agthoven et al., 2014). To provide additional specificity, anti-

bodies against αVβ3 and α5β1 integrins were employed in infection-blocking

experiments in HUVEC and VeroE6 cells, and were shown to selectively

inhibit infections by virulent hantaviruses (ANDV, SNV, HTNV, DOBV

and NY-1V), and avirulent PHV, respectively (Gavrilovskaya et al., 1998,

1999; Popugaeva et al., 2012). Many integrins recognize a tripeptide

arginine-glycine-aspartate (RGD)motif that is essential for integrin-dependent

cell adhesion. The RGDmotif is found in fibronectin, vitronectin, fibrinogen,

von Willebrand factor, and many other large glycoproteins (Ruoslahti, 1996).

However, the lack of inhibition of NY-1V and SNV infection by soluble

integrin-blocking RGD peptides and the absence of RGDmotifs in hantavirus

Gn/Gc proteins suggested a non-RGD-mediated interaction. Moreover,

Chinese hamster ovary (CHO) cells expressing a mutated αVβ3 integrin were

rendered incapable of binding its physiological ligands and were susceptible to

hantavirus infection, further suggesting an RGD-independent mechanism

(Gavrilovskaya et al., 1998, 1999).

Ectodomains of the β3 integrin subunit consist of a β-I domain, a hybrid

domain, a plexin-semaphorin-integrin (PSI) domain, and four epidermal

growth factor (EGF) modules (Campbell and Humphries, 2011; Xiong

et al., 2001, 2002). The PSI domain is located at the apex of the β3 integrin
protein in its bent/inactive conformation (Xiong et al., 2001). In vitro

genetic complementation and neutralization studies mapped the αVβ3
integrin requirement for ANDV and NY-1V infection to the PSI domain

(Matthys et al., 2010; Raymond et al., 2005). However, overexpression

of human αVβ3 integrin in poorly permissive SupT1 cells failed to restore

HTNV and PUUV infectivity (Higa et al., 2012), and a clear correlation

between levels of αVβ3 expression and susceptibility to HTNV and PUUV

infections was lacking (Higa et al., 2012; M€uller et al., 2019) suggesting the
existence of integrin-independent entry pathways. Although many studies
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have outlined the importance of β1/β3 integrins for cellular susceptibility to
hantavirus infection, a direct interaction between hantavirus Gn/Gc and

β1/β3 integrins has not yet been reported. Additionally, efforts to test the

roles of αVβ3 and α5β1 integrins in vivo have been inconclusive. Treatment

of newborn murine pups with antibodies targeting αVβ3 integrin after

HTNV challenge afforded only a modest increase in survival time (Song

et al., 2005). A similar, modest, increase in survival time was also reported

when mice were injected with β1 integrin-specific antibodies (Song

et al., 2005).

Raftery et al. suggested that hantaviruses use the αMβ2 and αXβ2 integrins
to activate neutrophils resulting in the formation of neutrophil extracellular

traps (Raftery et al., 2014). Overexpression of αMβ2 or αXβ2 integrin in

CHO cells modestly increased HTNV infection suggesting their potential

role in virus entry and infection (Raftery et al., 2014). Given that β2 integrins
are exclusively expressed on leukocytes, their relevance as hantavirus recep-

tors is unclear since hantavirus infection of neutrophils is nonproductive

(Raftery et al., 2014).

Given their pulmonary route of infection in humans, initial infections

by hantaviruses are likely to occur at the apical surface of the respiratory

epithelium. In vitro studies showed that HTNV, PUUV and Black Creek

Canal virus (BCCV) infected polarized epithelial cells predominantly via

the apical surface (Krautkr€amer and Zeier, 2008; Ravkov et al., 1997),

whereas ANDV could infect via both, apical and basolateral surfaces

(Rowe and Pekosz, 2006). It is unclear if αVβ3 integrins are expressed

at the apical surface (Aplin et al., 1996; Conforti et al., 1992;

Schoenenberger et al., 1994) suggesting other cell-surface receptors may

mediate virus entry. Experiments to identify such molecules were carried

out in polarized cells. Removal of glycosylphosphatidylinositol (GPI)-

anchored proteins from the cell surface via phosphatidylinositol-specific

phospholipase C treatment led to the identification of decay-accelerating

factor (DAF/CD55) as a candidate receptor (Krautkr€amer and Zeier,

2008). DAF/CD55 is a 70-kDa GPI-anchored protein localized exclusively

to the apical surface of polarized epithelial cells and has been described as an

important co-receptor for a number of enteroviruses (Bergelson et al., 1994;

Karnauchow et al., 1996; Shafren et al., 1995). Treatment of polarized cells

with DAF/CD55-specific antibodies or human recombinant DAF/CD55

ectodomain reduced infection of HTNV and PUUV in a concentration-

dependent manner. A separate study confirmed the importance of DAF/

CD55 for DOBV (Popugaeva et al., 2012). Other studies have described
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high-affinity binding of inactivated SNV particles to DAF/CD55 expressed

on Tanoue B cells (Buranda et al., 2010, 2014). However, the relevance of

DAF/CD55 as a hantavirus receptor in vivo and its role in viral pathogenesis

remain unknown.

Proteomic approaches to identify HTNV-binding host factors revealed

gC1qR as a candidate cell attachment factor (Choi et al., 2008). gC1qR, a

32-kDa glycoprotein, has no transmembrane domain, but associates with

the cell surface through its interactionwith other proteins, including integrins,

and it can bind to the globular head domain of C1q, a complement protein

(Feng et al., 2002). RNA interference-mediated suppression of gC1qR in

human lung epithelial A549 cells reducedHTNVbinding and infection. Sim-

ilarly, ectopic expression of gC1qR in CHO cells conferred susceptibility to

HTNV infection. However, the precise role of gC1qR in hantavirus entry

and its in vivo relevance to viral infection and pathogenesis are unknown.

Using a genome-wide loss-of-function genetic screen in human haploid

cells, we recently identified PCDH1 as a New World hantavirus receptor

( Jangra et al., 2018). This type I transmembrane protein is a member of

the cadherin superfamily and is composed of seven extracellular cadherin

(EC) repeats, a transmembrane domain, and a cytoplasmic tail (Sotomayor

et al., 2014). PCDH1 is highly expressed in neuronal cells during develop-

ment, but is also expressed in airway endothelial cells (Faura Tellez et al.,

2016; Koppelman et al., 2009; Kozu et al., 2015), which are the major target

cells of hantavirus infection in vivo (Nolte et al., 1995; Zaki et al., 1995).

Genetic knockout (KO) of PCDH1 in human cell lines and primary endo-

thelial cells significantly reduced their susceptibility to multiple New World

viruses, including ANDV, SNV, PHV andMaporal virus (MPRLV), but not

to the Old World viruses HTNV and SEOV, providing evidence that

PCDH1 is a hantavirus clade-specific entry factor ( Jangra et al., 2018).

The first extracellular cadherin repeat (EC1) of PCDH1 was found to be

required for New World hantavirus entry. Further, treatment of cells with

an antibody against the EC1 domain prior to virus exposure or preincubation

of virus with a soluble version of PCDH1 reduced New World hantavirus

infection in a dose-dependent manner. Importantly, multiple assays showed

that New World hantavirus Gn/Gc proteins directly recognize EC1, and a

biolayer interferometry-based assay with purified components indicated that

these proteins interact with nanomolar affinity ( Jangra et al., 2018). To test

the in vivo relevance of PCDH1, PCDH1-KO Syrian golden hamsters were

generated by CRISPR-Cas9 genome engineering, and WT and PCDH1-

KO hamsters were challenged intranasally with a lethal dose of ANDV.

Unlike their WT counterparts, the PCDH1-KO hamsters largely survived
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viral challenge and exhibited limited pathology. The PCDH1-KO hamsters

also had lower viral loads in the lung than WT hamsters. Taken together,

these findings validated the requirement of PCDH1 for ANDV entry,

infection, and pathogenesis in vivo. However, genetic disruption of PCDH1-

hantavirus Gn/Gc interaction did not completely inhibit New World

hantavirus attachment and entry in vitro, and PCDH1 KO failed to completely

eliminate viral replication and disease in hamsters, suggesting that PCDH1-

independent entry pathways exist ( Jangra et al., 2018). This work further

underlines the complexity of the hantavirus entry process and points to the need

to evaluate the interplay of different candidate receptors and other host factors

in hantavirus entry.

7. Role of candidate receptors in pathogenesis

Although capillary endothelial cells are the major targets of hantavirus

infection, viral replication does not appear to directly damage these cells or

the vascular endothelium (Nolte et al., 1995; Zaki et al., 1995). Rather, the

impairment of endothelial barrier integrity due to an excessive innate

immune response is proposed to be central to pathogenesis (Hepojoki

et al., 2014; Sch€onrich et al., 2015) and is a hallmark of hantavirus disease

(Duchin et al., 1994; Spiropoulou and Srikiatkhachorn, 2013).

Vascular endothelial growth factor (VEGF), also known as vascular per-

meability factor, is a key regulator of endothelial permeability (Rahimi,

2017; Senger et al., 1983, 1986). β3 Integrin has been proposed as a host

determinant of hantavirus pathogenesis (Mackow and Gavrilovskaya,

2009) given its link to the disruption of endothelial barrier function. VEGF

binding to its receptor, VEGFR2, triggers a cascade of signaling events lead-

ing to the internalization of VE-cadherin, an adherens junctions protein,

which then increases endothelial cell permeability and vascular leakage

(Gavard and Gutkind, 2006). On endothelial cells, αVβ3 integrins regulate
the permeabilizing effects of VEGF by forming a complex with VEGFR2

(Borges et al., 2000; Soldi et al., 1999). Angiogenic responses to hypoxia

and vascular endothelial growth factor (VEGF) are enhanced when β3
integrins are knocked out in vitro and in vivo (Hodivala-Dilke et al., 1999;

Reynolds et al., 2002; Su et al., 2012). Further, endothelial cells infected

with pathogenic hantaviruses are able to recruit platelets via αIIβ3 integrin
in vitro (Gavrilovskaya et al., 2010), which might contribute to the develop-

ment of thrombocytopenia, another hallmark of hantavirus disease. How-

ever, β3 integrin-dependent hantaviruses differ greatly in their virulence in

humans as well as experimental animals and cause distinct pathologies,
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suggesting a more complex picture (Hepojoki et al., 2014). Use of α5β1
integrin instead of αVβ3 integrin by some hantaviruses has been proposed

as an explanation for their lack of virulence (Gavrilovskaya et al., 1998,

1999). However, Sangassou virus (SANGV), a β1 integrin-dependent hanta-
virus (Klempa et al., 2012), is capable of causing human infections, if not

disease, in Africa (Klempa et al., 2010). Thus, β1 integrin usage by avirulent

PHV andTULVmay not be generalizable to all non-pathogenic hantaviruses,

and evaluation of integrin usage of a larger group of hantaviruses is warranted.

Engagement of another candidate receptor, β2 integrin, by hantaviruses on

neutrophils has also been proposed and was implicated as the mechanism of

recruitment and activation of neutrophils to the site of hantavirus replication

and pathogenesis (Raftery et al., 2014; Sch€onrich et al., 2015).

In vivo studies with PCDH1-KO Syrian hamsters suggest that PCDH1 is

an essential determinant of the severity of HPS ( Jangra et al., 2018). As com-

pared to WT animals, lungs from KO animals bore much lower levels of

viral RNA and antigen following a lethal ANDV challenge. Moreover, only

mild inflammation and tissue damage was seen in the PCDH1-KO animals

( Jangra et al., 2018). The lower inflammation and tissue damage in PCDH1-

KO animals may simply be a result of lower viral loads, but it is also conceiv-

able that PCDH1 plays a more direct role in the pathogenesis of HPS.

PCDH1 localizes to cell-cell contacts of epithelial cells and its knockdown

compromises epithelial barrier function (Faura Tellez et al., 2016; Kozu

et al., 2015). Thus, perturbation of PCDH1 expression or localization by

viral infection may alter vascular permeability. Further, PCDH1 carries a

long cytoplasmic tail that is involved in signaling (Kim et al., 2011). Those

signaling events, poorly defined at present, may contribute to hantavirus

infection and/or HPS pathogenesis. Regardless of the role of PCDH1

and other viral receptors and entry factors in the pathogenesis of HPS, cur-

rent evidence indicates that the M genome segment, encoding the Gn/Gc

proteins, is not the sole determinant of the difference in viral virulence

between ANDV and SNV in Syrian hamsters (McElroy et al., 2004).

Indeed, the capacity of virulent hantaviruses to delay the early induction

of the interferon response (Geimonen et al., 2002; Hepojoki et al., 2014;

Matthys andMackow, 2012; Spiropoulou et al., 2007) is likely to play a role.

8. Candidate receptors as determinants of host range

Host range at a cellular level is determined by a combination of

susceptibility, the ability of cells to allow entry of virions into the cytoplasm,

and permissiveness, the capacity of cells to support cytoplasmic viral

202 Eva Mittler et al.



replication. Together with antiviral host factors that restrict viral replication,

host factors required for viral entry and replication, including viral receptors,

are key molecular determinants of host range for viruses. However, the roles

of candidate hantavirus receptors as potential determinants of host range are

poorly understood. An aspartate to asparagine (D39N) mutation at position

39 in human β3 integrin impedes NY-1V infection (Raymond et al., 2005).

Moreover, a leucine residue at position 33 (L33) in the PSI domain of

human β3 integrin has been proposed as a key determinant of ANDV infec-

tion and a proline mutation (L33P) in its bovine ortholog impairs ANDV

infection (Matthys et al., 2010). Single-nucleotide polymorphisms (SNPs)

with changes to valine and proline residues at L33 have been reported in

human β3 integrin ( Joutsi-Korhonen et al., 2004; Watkins et al., 2002).

Based on a limited data set, ANDV-infected individuals were recently

shown to have a higher prevalence of L33 (89%) than exposed but uni-

nfected close-household contacts (60%) (Martı́nez-Valdebenito et al.,

2019). By contrast, another study observed no effect of SNPs in αV or β3
integrins on HFRS susceptibility (Chen et al., 2017). However, the

in vivo relevance of β3 integrin as a candidate receptor, its direct interaction

with hantavirus glycoproteins and any effect of β3 integrin mutations on host

range remain to be conclusively determined. Robust PUUV and HTNV

infection of kidney cells derived from bank voles, the PUUV reservoir host,

despite undetectable levels of β3 integrin (M€uller et al., 2019) is suggestive of
distinct receptor usage in these reservoir hosts and the identification of such

factors will enhance our understanding of hantavirus biology.

9. Model systems to study hantavirus entry

The need for high-biocontainment facilities has challenged the study

of entry by highly lethal hantaviruses. This roadblock has been eased by the

development of surrogate viral systems bearing the hantavirus glycoproteins,

Gn/Gc, which are necessary and sufficient for hantavirus entry. When

co-expressed independent of other hantavirus proteins, Gn/Gc assemble

into virus-like particles (VLPs) bearing heteromeric spikes similar to those

on authentic virions, and resemble the latter in antigenicity (Acuña et al.,

2014; Betenbaugh et al., 1995; Li et al., 2010). Although hantavirus VLPs

have proven highly useful for studies of Gn/Gc organization and function

(Acuña et al., 2014; Betenbaugh et al., 1995; Li et al., 2010), current

approaches do not allow for the packaging of a reporter genome, and thus

VLPs cannot be employed to assay productive viral entry at present.
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Toovercome this limitation, researchers have developed various surrogate

systems that rely on replacing the native viral entry proteins of model viruses

with hantavirus Gn/Gc. The latter can be provided either in trans (by ectopic

Gn/Gc expression in infected cells) or in cis (by engineering the hantavirus

M segment encoding Gn/Gc into the viral genome) to generate “sheep in

wolf’s clothing” viral pseudotypes capable of single or multiple rounds of

entry and infection, respectively. Several viruses have been employed to gen-

erate these pseudotypes, most notably the rhabdovirus vesicular stomatitis

virus (VSV) (Brown et al., 2011; Jangra et al., 2018; Kleinfelter et al.,

2015; Petersen et al., 2014; Slough et al., 2019) and several retroviruses

(Cifuentes-Muñoz et al., 2010, 2011;Ma et al., 1999; Yu et al., 2013). Impor-

tantly, data obtained with such surrogate viral systems must be corroborated

with the respective hantaviruses, and indeed, VLPs and pseudotyped viruses

have both been shown to behave similarly to their authentic viral counterparts

(Higa et al., 2012; Jangra et al., 2018; Kleinfelter et al., 2015; Paneth Iheozor-

Ejiofor et al., 2016; Petersen et al., 2014; Ray et al., 2010).

The use of surrogate viruses has afforded the discovery of new mecha-

nistic information regarding hantavirus entry. Because VSVs are cytolytic,

they have been used to uncover host factors required for hantavirus entry

in comprehensive genetic screens in human cells using cell survival as a selec-

tion and to dissect the entry-related roles of these host factors ( Jangra et al.,

2018; Kleinfelter et al., 2015; Petersen et al., 2014). This approach has

uncovered the critical roles of host factors, including the New World han-

tavirus receptor, PCDH1 ( Jangra et al., 2018), and cholesterol during virus

entry and infection (Kleinfelter et al., 2015; Petersen et al., 2014). Pseudo-

typed VSVs have also enabled the production of large viral preparations

necessary to efficiently evaluate neutralizing antibodies against both Old

World and New World hantaviruses (Higa et al., 2012; Kallio-Kokko

et al., 2001; Lee et al., 2006; Levanov et al., 2019; Ogino et al., 2003;

Paneth Iheozor-Ejiofor et al., 2016) and immunization with these viruses

induces production of neutralizing antibodies and protection in animal

models (see Section 10 for details) (Brown et al., 2011; Lee et al., 2006;

McClain et al., 2000; Prescott et al., 2014). Pseudotyped lentiviruses bearing

hantavirus Gn/Gc proteins have been used to characterize the fusion loops

within Gc (Cifuentes-Muñoz et al., 2011) and to selectively transduce

vascular endothelial cells (Qian et al., 2006).

Not all hantavirus glycoproteins are amenable to efficient pseudotyping

in VSV vectors, however, likely due to a mismatch in the sites of VSV

and hantavirus budding within cells. Specifically, the VSV glycoprotein is
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targeted to the plasma membrane, which is the site of VSV budding (Brown

and Lyles, 2003; Green et al., 1981; Johnson et al., 1998), whereas hantavirus

Gn/Gc proteins are largely targeted to the Golgi complex (Deyde et al.,

2005; Pensiero and Hay, 1992; Ruusala et al., 1992; Spiropoulou, 2001;

Spiropoulou et al., 2003) andOldWorld hantaviruses bud into this organelle

(Hung, 1988; Hung et al., 1983). Despite this mismatch, it has been possible

to generate VSVs bearing Gn/Gc from ANDV and other NewWorld han-

taviruses (Brown et al., 2011; Jangra et al., 2018; Kleinfelter et al., 2015),

likely because some Gn/Gc localizes to the plasma membrane (Deyde

et al., 2005; Spiropoulou et al., 2003) and can be incorporated into budding

virions (Goldsmith et al., 1995; Ravkov et al., 1997). By contrast, generating

such VSVs bearing Old World hantavirus Gn/Gc has been more challeng-

ing, because little or none of these proteins localize to the plasma membrane

(Ogino et al., 2003, 2004; Shi and Elliott, 2002). Recently, replication-

competent VSVs were used in a forward genetic approach to identify key

mutations in Old World HTNV and DOBV Gn/Gc that enhanced viral

multiplication. These studies found that mutations in the cytoplasmic

domain of Gn and in the membrane-proximal region of the Gc ectodomain

acted synergistically to enhance Gn/Gc incorporation into VSV particles,

primarily by increasing Gn/Gc cell surface expression (Slough et al.,

2019). The use of similar strategies to generate VSVs expressing other

hantavirus Gn/Gc that have been hard to produce is expected to facilitate

studies on hantavirus entry. Moreover, similar forward genetic approaches

with replication-competent VSVs could be employed to investigate the

mechanisms of action of antiviral drugs and neutralizing antibodies through

the selection of drug- and antibody-neutralization escape mutants.

10. Vaccines and neutralizing antibodies

No FDA-approved vaccines or specific therapeutics are available to

prevent or treat hantavirus infection and/or disease. Studies in HPS

(ANDV- or SNV-infected) as well as HFRS (PUUV-infected) convalescent

patients suggest a direct correlation between the early mounting of an effi-

cient neutralizing antibody (nAb) response and milder disease outcomes

(Bharadwaj et al., 2000; Pettersson et al., 2014; Valdivieso et al., 2006).

The protective efficacy of hyperimmune sera in animal models and humans

further suggests that Gn/Gc-specific antibodies elicited by active or passive

immunization may have utility in the treatment of hantavirus disease

(Brocato et al., 2012, 2014; Hooper et al., 2008, 2014a,b; Klingstr€om
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et al., 2008; Vial et al., 2015). Although numerous studies highlight the

importance of nAbs for protection against hantaviruses, cDNA-based vac-

cination could protect Syrian hamsters from lethal ANDV challenge in

the absence of any nAb activity suggesting that nAbs are sufficient but

not essential (Brocato et al., 2013).

Vaccination is the most successful approach to induce a potent antiviral

state and afford protection against viral infections and diseases. Over the last

20 years, numerous vaccine candidates and modalities have been evaluated

for their efficiency against hantaviruses. Since 1990, a formalin-inactivated

HTNV vaccine grown in suckling mouse brains (Hantavax™) has been

marketed in the Republic of Korea (Cho et al., 2002; Yamanishi et al.,

1988). However, due to the lack of well-designed clinical trials, its clinical

efficacy and long-term immunogenicity have remained unclear. In a recent

phase III clinical trial, high seroconversion but poor nAb generation was

reported (Song et al., 2016). Another case-control study observed a moder-

ate protective efficacy of Hantavax™, especially in high-risk populations

( Jung et al., 2018). Despite the availability of Hantavax™, therefore, there

is a clear and urgent need for new and more efficacious hantavirus vaccines.

As an alternative to inactivated vaccines, live-attenuated vaccines using

recombinant VSV or adenovirus (AdV) vectors expressing hantavirus Gn/Gc

have been developed. A single injection of a replication-competent VSV vec-

tor expressing ANDV Gn/Gc protected Syrian hamsters against lethal

ANDV challenge as early as 3 days post immunization (Brown et al.,

2011; Prescott et al., 2014). Protection lasted for up to 6 months and loss

of protection at later time points correlated with a loss of nAb responses

(Prescott et al., 2014). Vaccination of hamsters at 24h post-ANDV challenge

was largely protective, suggesting that induction of a potent antiviral state by

the recombinant vector itself may have contributed to protection (Brown

et al., 2011; Prescott et al., 2014). Single-cycle VSVs carrying HTNVGn/Gc

also afforded protection against HTNV infection in a non-lethal Balb/c

mouse model (Lee et al., 2006). Recombinant human AdV serotype 5

(Ad5V)-based vectors expressing ANDV Gn or Gc and recombinant canine

AdV serotype 2-based vectors expressing SEOV Gn afforded protection of

Syrian hamsters and Balb/c mice against lethal virus challenge, respectively

(Safronetz et al., 2009; Yuan et al., 2009). Syrian hamsters vaccinated with

a vaccinia virus vector expressing HTNV Gn/Gc and N proteins showed

no viremia when challenged with HTNV or SEOV, but were partially

susceptible to PUUV infection suggesting partial cross-protection between

closely related hantaviruses, and the possibility that broadly protective hanta-

virus vaccines can be designed (Chu et al., 1995; Schmaljohn et al., 1992).

206 Eva Mittler et al.



Although virus-based vaccine platforms have shown promise in animal

models, their translation to human use has been complicated by several

factors (Tatsis and Ertl, 2004). Pre-existing immunity to Ad5V and other

common AdV serotypes might reduce vaccine efficacy. This problem can

be avoided by establishing vectors based on rare human (Barouch et al.,

2004; Lemckert et al., 2005) or animal adenovirus serotypes (Kobinger

et al., 2006). Poor vaccine efficacy due to pre-existing immunity was also

observed with vaccinia virus-based vectors: vaccinia viruses expressing

HTNV Gn/Gc elicited HTNV-specific nAb titers in 72% of vaccinia

virus-naı̈ve patients, but only in 26% of vaccinia virus-immune patients

(McClain et al., 2000). Although there is little pre-existing immunity against

VSV in most human populations, the increasing popularity of VSV-based

vaccines might alter this scenario in the future (L�evy et al., 2018; Regules

et al., 2017; Suder et al., 2018).

DNA-based subunit vaccines comprising cDNA vectors encoding han-

tavirus Gn/Gc have also been evaluated. Immunization of Syrian hamsters

with DNA vaccines encoding SEOV or HTNV Gn/Gc rendered them

resistant to challenges with HTNV, SEOV and DOBV, but not with the

more divergent PUUV (Hooper et al., 1999, 2001). PUUV and SNV

Gn/Gc-based cDNA vaccines were also protective in Syrian hamsters

(Brocato et al., 2013; Hooper et al., 2013). Unexpectedly, an equivalent

ANDV cDNA vaccine was not immunogenic or protective in Syrian hamsters

despite the generation of high nAb levels against ANDV aswell as heterologous

SNV in rhesus macaques (Custer et al., 2003). Passive transfer of sera conferred

complete protection to Syrian hamsters even when carried out 4–5 days post-
ANDV challenge and delayed HPS development when injected 1 day

pre-challenge (Custer et al., 2003). In two phase I clinical studies, three vacci-

nations with cDNA vaccines expressing HTNV or PUUVGn/Gc by particle-

mediated epidermal delivery showed limited immunogenicity: only 30–56% of

individuals developed a nAb response (Boudreau et al., 2012; Hooper et al.,

2014a,b). cDNA electroporation improved nAb generation and resulted in

nAb responses in up to 78% of individuals (Hooper et al., 2014a,b).

Passive transfer of polyclonal antibodies from animals immunized

with hantavirus Gn/Gc-based vaccines conferred protection against lethal

ANDV challenge in Syrian hamsters (Brocato et al., 2012, 2014; Haese

et al., 2015; Hooper et al., 2008, 2014a,b). Importantly, passive transfusion

of hyperimmune sera from ANDV convalescent donors to acute HPS

patients improved disease outcomes and nAb titers were found to correlate

inversely with HPS severity (Vial et al., 2015) suggesting that mAb-based

anti-hantavirus therapeutics could be developed as a complement to vaccines.
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For the development of mAb-based therapies, Garrido et al. isolated

ANDV Gn/Gc-specific memory B cells from a HPS convalescent patient

to generate recombinant human IgG antibodies and evaluated two potently

neutralizing mAbs (JL16 and MIB22) for their post-exposure efficacy in

Syrian hamsters (Garrido et al., 2018). All hamsters treated with the mAbs,

alone or in combination, at 3 and 8 days post lethal ANDV challenge were

protected. One of the two mAbs, JL16, cleared virus completely from the

hamster lung despite its lower in vitro neutralization capacity, suggesting that

antibody Fc-dependent effector functions, including antibody-dependent

cellular cytotoxicity (ADCC), may play roles in hantavirus clearance in vivo.

11. Conclusions and future directions

Despite significant progress in understanding the biology of hantavi-

ruses, the mechanisms by which these viruses enter cells and establish

infection remain poorly understood. Many of the experiments describing

hantavirus candidate receptors such as integrins (β1, β2 and β3), DAF/

CD55, and gC1qR were performed before the advent of powerful exper-

imental approaches for the genetic manipulation of cells and hosts, including

RNA interference-mediated gene silencing and CRISPR-Cas9 genome

engineering. Thus, genetic evidence to support a direct role of these and

other candidate entry host factors is lacking. Further, little biochemical or

structural evidence is currently available to support hypotheses that these

candidate receptors directly engage the hantavirus Gn/Gc glycoproteins.

Recent in vitro and in vivo studies provided genetic evidence that the

cadherin-superfamily protein, PCDH1, plays a critical role in cell entry,

infection, and disease by New World hantaviruses, and used a variety of

approaches to demonstrate that PCDH1 directly interacts with hantavirus

Gn and/or Gc.

Elucidation of the structures of hantavirus particles via cryo-electron

microscopy and the X-ray crystal structures of isolated Gn and Gc subunits

has helped characterize the conformational rearrangements required for

hantavirus membrane fusion. However, structures of the entire Gn/Gc

complex alone and bound to candidate receptors are needed to deepen

our understanding of hantavirus entry. The lack of suitable animal models

for most hantaviruses and genetic engineering tools to generate gene knock-

outs in Syrian hamsters, the only available small animal model for human

hantavirus disease, until recently have further hampered the in vivo evalua-

tion of host factors in hantavirus infection and disease. However, the wider
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availability of CRISPR-Cas9 tools, newly generated pseudotyped surrogate

viruses for a number of hantaviruses, and recent discoveries of novel

hantaviruses from a variety of non-rodent hosts have set the stage for more

extensive investigations of hantavirus entry, infection and disease and may

pave the way for the development of improved animal models for HPS

and HFRS. Despite significant progress in the development of hantavirus

vaccines, key features of the immunological mechanisms by which these

vaccines afford protection, including the definition of protective epitopes

in hantavirus Gn/Gc, remain poorly characterized. We anticipate that the

new tools for hantavirus research mentioned above will accelerate the design

of improved vaccine immunogens and the development of highly effective

antibody therapies to prevent and treat hantavirus disease.

Box 1 Open questions
Despite significant advances, many gaps exist in the understanding of how hanta-
viruses hijack host machinery to enter their target cells. Some key questions are:
● What is the in vivo relevance of the candidate receptors β1, β2, and β3

integrins, DAF/CD55, and gC1qR, in hantavirus infection and disease?
● What, if any, is the interplay among these candidate receptors and PCDH1 in

hantavirus entry in vitro and in vivo?
● What is the structure of the hantavirus Gn/Gc complex in the oligomeric state

found in virions?
● What are the structural bases of the interactions between Gn/Gc and its

receptor(s)?
● Are there conformational changes in hantavirus Gn and/or Gc upon receptor

binding, and if so, are these changes required for subsequent membrane
fusion?

● How are the various pathways for hantavirus internalization into cells
influenced by the type of virus, host, or cell type?

● Do hantavirus receptors play a direct role in mediating the internalization of
virus particles?

● What are the endosomal sites of hantavirus membrane fusion and are they
dependent on the type of virus or cell?

● Does hantavirus membrane fusion require host factors other than acid pH
and cholesterol?

● Does host factor usage differ between human and natural reservoir hosts?
● What are the differences in cellular entry between rodent-borne and non-

rodent-borne hantaviruses?
Continued
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